Though much progress has been made in monitoring droughts and understanding their causes, there is still a strong need for better precision in both the monitoring and forecasting of droughts. A team lead by Arizona State University researchers seeks to enable the move from a reactive to a more proactive approach to droughts by developing new capabilities to conduct global drought monitoring using satellite detection of water stress and hydrologic models applied at regional scales.
Under the direction of ASU hydrologist and Sustainability Scientist Enrique Vivoni, a contingent of ASU researchers is leading a group from NASA Ames, California State University at Monterey Bay and a non-profit research and development organization known as Planetary Skin Institute (PSI) in integrating multi-resolution, remote sensing-based drought indices into an online, cloud computing-based visualization platform.
Vivoni intends to expand this drought effort into a hydrological risk monitoring platform that also deals with floods, landslides, erosion potential, etc. to provide a more complete picture of global water excess and water limitations.
“Eventually, the drought monitor will also help our undergraduate and graduate students interact, query and explore real-time remote sensing data that describe changes in the hydrological cycle over their regions of interest. By bringing research products into classroom activities, our student learning experiences will be enriched,” adds Vivoni.